12345

当前位置:首页 > 行业新闻


粉末冶金零件加工研究进展
阅读 40 次  发布于:2017-5-18

  粉末冶金工艺可用低廉的成本生产传统制造方法难以生产的零件,在国民经济中的地位愈来愈重要。随着粉末冶金零件向复杂化、微型化、精密化方向发展,对粉末冶金零件的制造提出了更多的、新的挑战。生坯加工是解决粉末冶金烧结件加工难题的重要发展方向。

  粉末冶金具有低成本、高效率、少(无)污染等显著优点,广泛应用于家电、汽车等领域,如空调的压缩机气缸和汽车VVT等高精度零部件,其中在汽车行业的运用最为广泛,主要用于制造发动机和传动装置的零件,约占粉末冶金总需求量的70%以上。随着粉末冶金零件形状复杂化、微型化、精密化,粉末冶金制品已逐渐应用于军工、航天以及医疗卫生等领域。粉末冶金作为一种近净成形工艺,对于低精度零件,几乎不用机械加工,但对于精度要求较为严格的零件仍然必须经过机械加工才能满足质量要求。此外,受脱模路径的限制而无法成形的结构同样无法避免后续机械加工。据统计,有不低于40%的粉末冶金零件需要进行机械加工以满足精度要求。

  由于粉末冶金烧结件内部存在孔隙结构,刀具在孔隙间切入切出,使得刀具受到高频载荷的冲击作用,易产生疲劳破损;多孔结构降低了材料的导热性能,无法及时导出切削热,从而加剧刀具磨损;当材料宏观硬度为25HRC时,存在于材料内部的硬质颗粒的硬度可能达到60HRC,对刀具造成严重的磨粒磨损;一些高密度合金(如钨基合金)烧结后硬度高、脆性大,成为典型的难加工材料。因此,粉末冶金烧结件的加工尚存在诸多难题,有时甚至成为粉末冶金产品发展的瓶颈。据统计,在生产汽车液压传动件阀盖时,其机加工成本约占产品整体成本的70%。本文详细论述粉末冶金零件加工的研究现状以及改善粉末冶金零件可加工性的措施,并分析粉末冶金零件加工的未来发展趋势。

 

 1 粉末冶金零件加工研究现状

  (1) 加工工艺参数的影响

  M. Saoubi等利用PCBN刀具切削粉末冶金高速钢研究了加工参数和刀刃几何形状对刀具寿命、表面粗糙度和表面完整性的影响,得出了加工粉末冶金高速钢的优化工艺参数,并指出采用较大的刀尖圆弧半径可提高加工零件的表面粗糙度。Du等在切削粉末高温合金FGH95时发现,切削速度对粉末高温合金FGH95的已加工表面质量具有重要影响:加工过程中会产生加工硬化,当切削速度低于400m/min时,硬化层厚度约为80-100μm;当切削速度超过400m/min时,硬化层厚度将随着切削速度的增加而增加;在切削过程中还会出现白层(见图1),其厚度会随着切削速度的增加而减小。为了避免残留切削液对工件造成腐蚀,Czampa等在钻削烧结钢时采用将-10℃的冷空气引入切削区域的方法来达到降低切削温度的目的,其结果显示,使用冷空气冷却切削区域可以显著提高加工孔的外观质量。

 

  (2) 刀具的磨损与失效

  在粉末冶金零件的切削过程中,由于孔隙的存在,使切削刃因为疲劳而产生微裂纹,这些微裂纹会使切削刃产生微崩(见图2a和2b)。在实际切削过程中,除切削刃正常磨损外,刀具的失效还存在更为严重的形式:存在于材料内部的硬质颗粒给刀具造成严重的磨粒磨损(见图2b);硬质颗粒还会对刀具造成强烈的刮擦和冲击,极易引起前刀面产生脆性开裂,进而引发前刀面剥落(见图2c);由于材料的热导率较低,在切削过程中极易产生高温,进而造成严重的月牙洼磨损(见图2d)。此外,切削过程中还包含氧化磨损和扩散磨损。

  在实际切削过程中,刀具磨损普遍存在且快速发生,M. Saoubi等用 PCBN刀具切削粉末冶金烧结高速钢的试验中发现,在切削速度为150m/min时,切削长度仅25m就出现了刀具磨损(见图3)。刀具的快速磨损在实际生产过程中严重影响产品的生产效率,如某大中型粉末冶金企业在切削汽车VVT壳烧结件时发现其磨刀、换刀及对刀的时间占加工周期的三分之二以上,为此,如何克服刀具磨损是当前粉末冶金零件加工的重点和难点。

  

图3 切削过程中的刀具快速磨损

 

  (3) 刀具的材料与参数选择

  颉龙等选择涂层硬质合金刀片和焊接复合式立方氮化硼刀片对粉末冶金工具钢AHP10V进行了切削试验。结果表明,涂层硬质合金刀片更适用于粉末冶金工具钢AHP10V的加工,当主偏角为40°-50°、副偏角为0.5°-3°、刃倾角为-10°——-20°时可以避免出现积屑瘤,能够获得较好的已加工表面质量。辛民等在切削铁基和镍基粉末冶金材料时发现,相比硬质合金刀具,陶瓷刀具拥有更长的使用寿命。此外,由于陶瓷刀具的化学稳定性较好且与工件的摩擦系数较小,因此其加工后零件的表面粗糙度优于硬质合金刀具。郭丽波等选用YT15硬质合金、YW2硬质合金、YL100陶瓷和PCBN四种刀具切削粉末冶金烧结钢,以VB=0.2mm作为后刀面磨钝标准,结果显示,在高速切削时,PCBN刀具、YL100陶瓷刀具和硬质合金刀具的使用寿命依次降低,其中PCBN刀具的使用寿命约为硬质合金使用寿命的2-3倍;与高速切削相反,在低速切削过程中硬质合金刀具的使用寿命最长,PCBN刀具的寿命最短;在表面加工质量方面,PCBN刀具和YL100陶瓷刀具切削后的表面粗糙度明显优于硬质合金刀具。

  2 可加工性的改善与生坯加工

  对于粉末冶金烧结材料可加工性的改善措施主要有表面浸渗和添加易切削剂,这两种方法都能显著降低刀具磨损。生坯加工是在烧结前对材料进行机械加工,可以从根本上消除粉末冶金材料加工的刀具磨损,是一种新颖的粉末冶金制造工艺。

  (1) 表面浸渗与易切削剂的添加

  为了改善粉末冶金材料的多孔性导致切削力的波动,可用金属(通常是铜)或者聚合物对其表面进行浸渗,使其表面孔隙在加工前被封闭,降低切削力的波动,提高刀具寿命和已加工表面质量。与对材料进行浸渗相比,在实际生产过程中使用较多的是在材料中添加易切削剂,包括BN-h、MgSiO3以及CaF2、MnS等,其中MnS的使用范围最广。Liersch等研究了几种不同的添加剂,包括Pb、BN以及碳、石墨和几种不同的硫化物,结果显示,在烧结过程中,大部分硫化物会发生化学反应变成Fe1-xS,碳会完全溶解,而BN在超过1177℃后也会分解,只有MnS、Pb以及石墨会在烧结过程保持稳定,进而起到改善材料加工性能的作用;在加工后的表面粗糙度方面,添加了MnS的材料其表面质量最好,MoS2虽然会在烧结过程中变为Fe1-xS,但是同样可以获得仅次于添加MnS的良好加工质量,添加BN和石墨的材料其表面加工质量最差。需要指出的是,添加易切削剂会降低材料的强度和韧性等力学性能。

  (2) 粉末冶金零件的生坯加工

  粉末冶金生坯加工在20世纪90年代末由A Salak提出,该方法是在烧结前对压制成型的零件进行加工,此时粉末颗粒间靠冷焊和机械啮合连接,烧结后出现的高硬度的马氏体和贝氏体此时并不存在,在该情况下对其加工所造成的刀具磨损几乎可以忽略不计,同时可将加工效率提高到烧结件的3倍以上。

  

(a) 切削后的沟槽              (b) 齿的边缘破损情况

  图4 生坯切削后的汽车正时链轮

 

 1.生坯加工工艺

  如图4所示,Robert-Perron等利用生坯加工的方法制造汽车正时链轮沟槽。切削过程中发现,加工边缘的平均破损宽度随着生坯孔隙率的增大而增大。在对于切削质量影响程度的因素中,密度占40%,而进给率和切削速度只分别占37%和23%,证明了高密度对于生坯加工结果的重要影响。此外,试验表明,切削速度对已加工表面质量的影响较小,将切削速度从305m/min增至457m/min(高出50%)时,零件边缘的平均破损尺寸仅增加4%,因此在实际生产中可以使用较高的切削速度。在此基础上,Robert-Perron等利用正交试验方法,研究了钻头型号、转速和进给率对通孔加工质量影响。结果表明,当钻头直径为6.35mm、螺旋角为35°、顶角为118°时,在转速为7000rpm、进给率为0.0254mm/r时所加工的通孔质量最优,如图5所示,零件的平均破损为115μm,孔内粗糙度为3.7μm。

  

(a) 整体形貌                 (b) 局部放大情况

  图5 最优参数下孔的边缘破损情况

 

  何荣将硬质合金生坯在800℃的温度下预烧40min,预烧后强度约25.6MPa。对切削参数进行研究,结果显示为保持加工稳定性,加工过程需要较低的主轴转速,但为了获得较高加工质量必须使用较高的主轴转速和较低的进给率,为此必须综合考虑各方面因素对于加工质量的影响。为了获得较高加工质量,主轴转速应取2000r/min,进给率应为0.02-0.05mm/r。

  2.生坯强度的提高

  生坯加工要求压制的生坯强度必须大于20MPa,否则,生坯在装夹时极易发生破损;此外,在进行机械加工时,零件边缘容易发生崩损。为了提高生坯强度,加拿大魁北克金属粉末公司开发了新型聚合物润滑剂,该润滑剂能够在粉末压制过程中形成连续的坚固网络,并在较低温度下经过固化后提高生坯强度。研究表明,该新型聚合物润滑剂可使生坯强度达到45MPa以上,几乎超过传统润滑剂所能达到的强度的两倍。

  温压工艺是提高生坯强度的另一种方法,由赫格拉斯(H?gan?s)公司在1994年的国际粉末冶金和颗粒材料会议上正式公布。其工艺特点是在成形时将粉末和模具加热到90℃-150℃。通常认为,在该温度范围内粉末颗粒的屈服强度、加工硬化速率和硬化程度都会有一定下降,其塑性变形阻力和致密化阻力也同时下降,这些都有利于压制过程中粉末颗粒的塑性变形。研究表明,温压的生坯密度比常压的高出,生坯强度最多能达到常压的4倍,对于生坯加工来说,其强度已经能够满足要求。关于温压工艺的致密化机理目前尚未形成统一的认识,以果世驹教授为代表的观点认为,相对传统的压制过程,温压工艺并没有形成新的致密化机理,而其他一些学者认为温压工艺能够促进粉末颗粒的塑性变形和降低脱模力,使得粉末颗粒在压制过程中进行重排,促使小的粉末颗粒填充大的颗粒间隙,进而提高生坯密度。

  高速压制技术是提高生坯强度的又一种方法,是赫格拉斯公司于2001年推出的一项新技术,该技术要求上模冲以10-30m/s(常规压制速度约3m/s)的速度对中模内的粉末进行压制,较高的压制速度所带来的冲击能量以应力波的形式在粉末间传递,当应力波到达下模冲时,部分应力波会反射回来继续作用于粉末,如此反复直至应力波衰减为零。利用高速压制技术得到的生坯密度最高可达到,接近完全致密,高密度能显著提高生坯的强度,能够承受生坯加工的切削力和夹持力。

  3.生坯加工后烧结件的力学性能

  Desbiens等研究了生坯加工后烧结零件的拉伸性能和疲劳强度,将经过固化处理的方形生坯拉伸试样加工成圆形拉伸试样,烧结后对其进行拉伸试验测试。结果表明,当以1.5℃/s的速度将烧结温度从650℃冷却到350℃时,经过生坯加工的试样组织由90%的马氏体和10%的贝氏体构成,而未经过生坯加工的试样组织由70%的马氏体、20%的贝氏体以及10%的珠光体构成;相应地,经过生坯加工的试样其屈服强度和拉伸强度分别高出未经生坯加工试样的18%和9%。原因是经过生坯加工的试样从材料外部到内部的冷却速率要高于未经过生坯加工的试样。当冷却速度由较慢的1.0℃/s将温度从650℃冷却到350℃时,二者的拉伸性能并没有出现这一差异。在疲劳强度方面,经过生坯加工的试样与未经过生坯加工的试样基本一致。

  3 粉末冶金零件加工发展趋势

  粉末冶金生坯加工可以解决粉末冶金烧结件加工时刀具磨损问题,并且可以获得较好的已加工表面质量以及烧结后良好的力学性能,是粉末冶金零件加工未来的发展方向。

  粉末冶金生坯加工面临的主要问题是如何提高生坯强度和获得高的已加工表面质量。相比添加润滑剂来提高生坯强度,温压工艺的使用范围更广。但由于温压工艺会改变压坯在脱模后的弹性后效,经过生坯加工的零件在烧结后同样会有相应的尺寸变化,此时对于尺寸精度要求很高的零件在烧结后需要经过整形来满足要求,这一点在生坯加工过程中必须加以考虑。因此,将生坯压制成形、加工、烧结视为一个整体从而进行全工序的协同制造,从全工序的角度来研究粉末冶金零件的加工性能是一种新的发展趋势。实践证明,当生产小批量的产品时,高速压制完全可以达到生坯强度要求,但随着压制的进行,模具很快会出现疲劳损坏,这对实际生产是致命的。为此,如何提高模具的耐冲击性能和抗疲劳性能是进一步推广高速压制技术所面临的重要难题。此外,揭示生坯加工材料去除和已加工表面形成机理,是获得高的已加工表面质量的基础和前提。

  小结

  粉末冶金工艺可用低廉的成本生产传统制造方法难以生产的零件,在国民经济中的地位愈来愈重要。随着粉末冶金零件向复杂化、微型化、精密化方向发展,对粉末冶金零件的制造提出了更多的、新的挑战。生坯加工是解决粉末冶金烧结件加工难题的重要发展方向。将生坯压制成形、加工、烧结视为整体从而进行全工序的协同制造;提高生坯高速压制时模具的耐冲击性能和抗疲劳性能以及揭示生坯加工切削机理的研究是粉末冶金生坯加工发展的需要。